Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Environ Sci Pollut Res Int ; 30(15): 44773-44781, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2209478

ABSTRACT

Black carbon (BC) aerosols critically impact the climate and hydrological cycle. The impact of anthropogenic emissions and coastal meteorology on BC dynamics, however, remains unclear over tropical India, a globally identified hotspot. In this regard, we have performed in situ measurements of BC over a megacity (Chennai, 12° 59' 26.5″ N, 80° 13' 51.8″ E) on the eastern coast of India during January-June 2020, comprising the period of COVID-19-induced strict lockdown. Our measurements revealed an unprecedented reduction in BC concentration by an order of magnitude as reported by other studies for various other pollutants. This was despite having stronger precipitation during pre-lockdown and lesser precipitation washout during the lockdown. Our analyses, taking mesoscale dynamics into account, unravels stronger BC depletion in the continental air than marine air. Additionally, the BC source regime also shifted from a fossil-fuel dominance to a biomass burning dominance as a result of lockdown, indicating relative reduction in fossil fuel combustion. Considering the rarity of such a low concentration of BC in a tropical megacity environment, our observations and findings under near-natural or background levels of BC may be invaluable to validate model simulations dealing with BC dynamics and its climatic impacts in the Anthropocene.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Meteorology , India , Communicable Disease Control , Respiratory Aerosols and Droplets , Fossil Fuels/analysis , Carbon/analysis , Environmental Monitoring
2.
Curr Pollut Rep ; : 1-11, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-2175374

ABSTRACT

Purpose of Review: Fine particulate matter (PM2.5) and ground-level ozone (O3) pose a significant risk to human health. The World Health Organization (WHO) has recently revised healthy thresholds for both pollutants. The formation and evolution of PM2.5 and O3 are however governed by complex physical and multiphase chemical processes, and therefore, it is extremely challenging to mitigate both pollutants simultaneously. Here, we review mechanisms and discuss the science-informed pathways for effective and simultaneous mitigation of PM2.5 and O3. Recent Findings: Global warming has led to a general increase in biogenic emissions, which can enhance the formation of O3 and secondary organic aerosols. Reductions in anthropogenic emissions during the COVID-19 lockdown reduced PM2.5; however, O3 was enhanced in several polluted regions. This was attributed to more intense sunlight due to low aerosol loading and non-linear response of O3 to NO x . Such contrasting physical and chemical interactions hinder the formulation of a clear roadmap for clean air over such regions. Summary: Atmospheric chemistry including the role of biogenic emissions, aerosol-radiation interactions, boundary layer, and regional-scale transport are the key aspects that need to be carefully considered in the formulation of mitigation pathways. Therefore, a thorough understanding of the chemical effects of the emission reductions, changes in photolytic rates and boundary layer due to perturbation of solar radiation, and the effect of meteorological/seasonal changes are needed on a regional basis. Statistical emulators and machine learning approaches can aid the cumbersome process of multi-sector multi-species source attribution.

3.
Environ Sci Pollut Res Int ; 29(57): 85676-85687, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1482270

ABSTRACT

The megacities experience poor air quality frequently due to stronger anthropogenic emissions. India had one of the longest lockdowns in 2020 to curb the spread of COVID-19, leading to reductions in the emissions from anthropogenic activities. In this article, the frequency distributions of different pollutants have been analysed over two densely populated megacities: Delhi (28.70° N; 77.10° E) and Kolkata (22.57° N; 88.36° E). In Delhi, the percentage of days with PM2.5 levels exceeding the National Ambient Air Quality Standards (NAAQS) between 25 March and 17 June dropped from 98% in 2019 to 61% in 2020. The lockdown phase 1 brought down the PM10 (particulate matter having an aerodynamic diameter ≤ 10 µm) levels below the daily NAAQS limit over Delhi and Kolkata. However, PM10 exceeded the limit of 100 µgm-3 during phases 2-5 of lockdown over Delhi due to lower temperature, weaker winds, increased relative humidity and commencement of limited traffic movement. The PM2.5 levels exhibit a regressive trend in the highest range from the year 2019 to 2020 in Delhi. The daily mean value for PM2.5 concentrations dropped from 85-90 µgm-3 to 40-45 µgm-3 bin, whereas the PM10 levels witnessed a reduction from 160-180 µgm-3 to 100-120 µgm-3 bin due to the lockdown. Kolkata also experienced a shift in the peak of PM10 distribution from 80-100 µgm-3 in 2019 to 20-40 µgm-3 during the lockdown. The PM2.5 levels in peak frequency distribution were recorded in the 35-40 µgm-3 bin in 2019 which dropped to 15-20 µgm-3 in 2020. In line with particulate matter, other primary gaseous pollutants (NOx, CO, SO2, NH3) also showed decline. However, changes in O3 showed mixed trends with enhancements in some of the phases and reductions in other phases. In contrast to daily mean O3, 8-h maximum O3 showed a reduction over Delhi during lockdown phases except for phase 3. Interestingly, the time of daily maximum was observed to be delayed by ~ 2 h over Delhi (from 1300 to 1500 h) and ~ 1 h over Kolkata (from 1300 to 1400 h) almost coinciding with the time of maximum temperature, highlighting the role of meteorology versus precursors. Emission reductions weakened the chemical sink of O3 leading to enhancement (120%; 11 ppbv) in night-time O3 over Delhi during phases 1-3.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , Air Pollutants/analysis , Cities , Environmental Pollutants/analysis , Environmental Monitoring , Communicable Disease Control , Air Pollution/analysis , Particulate Matter/analysis
4.
Journal of Earth System Science ; 130(3), 2021.
Article in English | ProQuest Central | ID: covidwho-1349357

ABSTRACT

The nationwide lockdown in India to curb the spread of Coronavirus disease 2019 (COVID-19) led to colossal reduction in anthropogenic emissions. Here, we investigated the impact of lockdown on surface ozone (O3) and nitrogen dioxide (NO2) over a tropical coastal station – Thumba, Thiruvananthapuram (8.5°N, 76.9°E). Daytime as well as night-time NO2 showed reduction by 0.8 (40%) and 2.3 (35%) ppbv, respectively during the lockdown period of 25–30 March 2020 as compared with the same period of previous 3 years. Unlike many urban locations, daytime surface O3 is found to be dramatically reduced by 15 ppbv (36%) with O3 production rate being lower by a factor of 3 during the lockdown. Interestingly, a feature of O3-hump during the onset of land breeze typically observed during 1997–1998 has reappeared with magnitude of 5–10 ppbv. A photochemical box model, capturing this feature, revealed that significant O3 sustained till onset of land breeze over the land due to weaker titration with NOx during lockdown. It is suggested that the transport of this O3 rich air with onset of land breeze led to the observed hump. Our measurements unravel a remarkable impact of the COVID-19 lockdown on the chemistry and dynamics of O3 over this tropical coastal environment.

5.
Current Science (00113891) ; 120(2):376-381, 2021.
Article in English | Academic Search Complete | ID: covidwho-1052571

ABSTRACT

Elevated ozone (O3) near the earth’s surface causes adverse impacts on human health and vegetation, besides impacting air chemistry and climate. Intense lockdown to contain the spread of Coronavirus disease 2019 (COVID-19) offered a rare opportunity to delineate the anthropogenic impact on urban O3 build-up. In this regard, we incorporated observations of chemical species and environmental conditions into a photochemical box model (NCAR Master Mechanism) to study the O3 changes at a semi-arid urban site in western India (Ahmedabad;23°N, 72.6°E). In contrast with primary pollutants, daytime O3 build-up is observed to be enhanced during the lockdown by ~39%. Model, driven by lower nitrogen oxides (NOx) during the lockdown, also simulated enhanced O3 (by ~41%) showing the role of nonlinear dependence of O3 on NOx. Further, a sensitivity simulation unravelled an important role of the meteorological changes in the O3 enhancement (by ~16%) during the lockdown. The results highlight that the lockdown impacts can be modulated profoundly by the complex chemistry plus meteorological changes, offsetting the benefits of lower precursor levels in the context of O3 pollution. [ABSTRACT FROM AUTHOR] Copyright of Current Science (00113891) is the property of Indian Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL